Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọng

Bài viết Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọng thuộc chủ đề về Giải Đáp Thắc Mắt thời gian này đang được rất nhiều bạn quan tâm đúng không nào !! Hôm nay, Hãy cùng https://buyer.com.vn/hoi-dap/ tìm hiểu Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọng trong bài viết hôm nay nhé ! Các bạn đang xem bài : “Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọng”

Đánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọng


Xem nhanh
Biến giao tiếp thành lợi thế cạnh tranh của bạn.
Tìm hiểu các thông tin đào tạo cùng Coach Ngọc Thu, mời bạn kết nối tại link: https://leadbystorytelling.com/

Group Giao tiếp Truyền cảm hứng và Thuyết trình thuyết phục: https://www.facebook.com/groups/776293312706153

ICTS Training u0026 Coaching ❤️

Biến giao tiếp trở thành lợi thế cạnh tranh của bạn
https://leadbystorytelling.com/
https://zalo.me/g/eajdqv273
https://www.youtube.com/channel/UC7vgkVkOJ2Sdxn_MBzTguSQ
https://www.facebook.com/Ngocthustorytelling
https://www.linkedin.com/in/thubuistorytelling/

Trực quan hóa dữ liệu (Data Visualization) là kỹ thuật tạo ra những hình ảnh, biểu đồ, đồ thị để diễn tả thông tin đến người dùng. Trong bài viết này cùng 123job tìm hiểu tại sao nói Data Visualization vô cùng quan trọng nha.

Nếu như bạn đã quen thuộc với những phân tích trực quan hoá dữ liệu, thì chắc hẳn bạn đã biết đến những trực quan hóa dữ liệu (data visualization là gì). Đây đó là một phần quan trọng trong việc phân tích dữ liệu (data analysis). Trong ngay bài viết này, 123job sẽ cùng bạn để có khả năng giải thích đến những cách dùng và thảo luận về từng các loại hình ảnh và về các trực quan hoá dữ liệu khác nhau .

I. Trực quan hoá dữ liệu – Data Visualization là gì?

Trực quan hoá dữ liệu - Data Visualization là gì

Trực quan hoá dữ liệu là gì

Data visualization là gì? Trực quan hóa dữ liệu (data visualization) là một sự thể hiện dữ liệu hoặc là các thông tin thành biểu, đồ thị hoặc về định dạng trực quan hoá dữ liệu khác. Việc trực quan hoá về dữ liệu cho phép đến những chiều hướng và mô hình sẽ dễ dàng được nhìn thấy hơn. Với sự gia tăng của dữ liệu lớn như ngày nay, mỗi công ty cần có những có khả năng phân tích đến dữ liệu ngày càng lớn. Machine learning giúp đơn giản tiến hành đến các phân tích như phân tích về dự đoán, và cũng hữu ích trong việc trực quan hoá dữ liệu (data visualization) để trình bày. Nhưng trực quan hoá dữ liệu (data visualization) không chỉ là điều quan trọng đối với những phân tích dữ liệu mà nó còn rất quan trọng trong bất cứ những ngành nghề nào. Cho dù bạn có đang làm việc trong lĩnh vực tài chính, Marketing, công nghệ, thiết kế hay là bất cứ thứ gì khác, bạn cũng cần phải trực quan hoá dữ liệu.

II. Tại sao chúng ta cần trực quan hoá dữ liệu?

Data visualization là gì? Chúng ta cần trực quan hóa dữ liệu (data visualization) vì một bản tóm tắt thông tin trực quan hoá dữ liệu sẽ giúp việc xác định đến những mô hình và với những xu hướng được đơn giản hơn so với những việc xem qua hàng ngàn về bảng tính. Nó sẽ giúp bộ não của con người hoạt động. Vì với những mục đích của phân tích dữ liệu là sẽ tìm thấy về những insight ẩn sau dữ liệu, trực quan hoá dữ liệu sẽ có những giá trị hơn thường xuyên khi được trực quan hoá dữ liệu. Ngay cả khi với một nhà phân tích dữ liệu sẽ có thể phát hiện đến những insight sâu sắc từ những dữ liệu mà sẽ không trực quan hoá dữ liệu, sẽ khó khăn để họ sẽ có thể truyền đạt được ý nghĩa cho mỗi khách hàng, đồng nghiệp hiểu. Biểu đồ và về đồ thị giúp truyền đạt được những dữ liệu được đơn giản hơn.

Xem thêm: IT là gì? Làm thế nào để trở thành một lập trình viên giỏi?

✅ Mọi người cũng xem : khua nước là gì

III. Trực quan hoá dữ liệu được dùng như thế nào?

Trực quan hoá dữ liệu được dùng như thế nào

Trực quan hoá dữ liệu được sử dụng như thế nào

Data visualization là gì? Trực quan hoá dữ liệu (data visualization) có nhiều những tác dụng. Mỗi loại trực quan hóa dữ liệu (data visualization có khả năng được dùng theo như những cách khác nhau. Dưới đây sẽ là một số cách thường nhật nhất đang được dùng trực quan hóa dữ liệu (data visualization) .

✅ Mọi người cũng xem : nấu ăn tiếng anh là gì

 1. thay đổi ngay theo thời gian 

Đây có lẽ sẽ là cách dùng trực quan hóa dữ liệu (data visualization) cơ bản và được phổ biến nhất. Lý do nó phổ biến nhất đó là vì hầu hết những dữ liệu có liên quan đến  các yếu tố thời gian. do đó, bước đầu tiên trong việc để có khả năng phân tích được những dữ liệu đó là xem xu hướng về trực quan hoá dữ liệu theo thời gian sẽ như thế nào . 

2. Xác định mật độ tần suất

tần suất cũng là phương pháp dùng khá cơ bản của phía trực quan hóa dữ liệu (data visualization) vì nó cũng đang áp dụng cho những dữ liệu liên quan đến thời gian. Nếu như có yếu tố thời gian, điều hợp lý đó là bạn nên xác định đến các tần suất những sự kiện Có liên quan xảy ra theo như thời gian .

3. Xác định mối quan hệ (tương quan)

Xác định về mối tương quan đó là một cách sử dụng về trực quan hoá dữ liệu cực kỳ có tổng giá trị. Rất khó để có khả năng xác định được những mối quan hệ giữa hai biến mà không có trực quan hoá dữ liệu (data visualization), tuy nhiên điều quan trọng là cần phải nhận thức được về mối quan hệ trong dữ liệu. Đây là một ví dụ tuyệt vời về những tổng giá trị của trực quan hoá dữ liệu trong việc phân tích dữ liệu . 

Mọi Người Xem :   E là gì trong hóa học

✅ Mọi người cũng xem : ăn dưa là gì

4. Kiểm tra một mạng lưới 

Một ví dụ về việc kiểm tra trên một mạng lưới với trực quan hóa dữ liệu (data visualization) có khả năng được nhìn thấy trong các thống kê thị trường.Các chuyên gia Marketing cần nhận biết thương hiệu mình để nhắm đến đối tượng mục tiêu nào, để họ có khả năng phân tích được toàn bộ thị trường từ đó xác định những nhóm đối tượng hay để phân khúc thị trường, cầu nối giữa những nhóm, người có ảnh hưởng trong từng nhóm và từng những thứ khác quanh tệp khách hàng của mình . 

✅ Mọi người cũng xem : save trong tin học là gì

5. Lập kế hoạch 

Khi lập kế hoạch hoặc về những lịch trình cho một dự án phức tạp, khi mọi thứ có thể sẽ gây nhầm lẫn. Biểu đồ Gantt giải quyết đến các vấn đề đó bằng cách minh họa được rõ ràng từng nhiệm vụ trong từng dự án và mất bao lâu để có khả năng hoàn thành . 

✅ Mọi người cũng xem : văn thái sư phong thần ở đâu

6. Phân tích tổng giá trị và rủi ro 

Việc xác định về những số liệu phức tạp như giá trị và những rủi ro đòi hỏi được thường xuyên biến số khác nhéu và được đưa vào, khiến rất khó để nhìn thấy chính xác với một bảng tính dễ dàng. Data visualization là gì?. có thể dễ dàng như về việc mã hóa màu sắc với một công thức để có thể chỉ ra cơ hội nào khi có những giá trị và những rủi ro nào tương ứng .

Xem thêm: Công nghệ thông tin là gì? Các mảng trong ngành công nghệ thông tin

✅ Mọi người cũng xem : n nhỏ trong hóa học là gì

IV. các loại biểu đồ trực quan hoá dữ liệu

các loại biểu đồ trực quan hoá dữ liệu

các loại biểu đồ trực quan hoá dữ liệu

Có rất thường xuyên những công cụ có sẵn để có thể giúp tạo được những trực quan hóa dữ liệu (data visualization). một vài đó chính là thủ công và với một vài là tự động, nhưng một trong hai cách chúng sẽ cho phép bạn thực hiện đến bất kỳ loại hình trực quan hoá dữ liệu Data visualization là gì? sau đây . 

1. Biểu đồ đường (Line chart) 

Vẽ biểu đồ đường minh họa được những thay đổi ngay theo thời gian. Trục X thường là một khoảng thời gian, trục y là số lượng. Vì vậy, những tình trạng này có thể minh họa doanh được tới số bán hàng của mỗi công ty trong năm được chia nhỏ theo tháng hoặc với những số lượng đơn vị một nhà máy sản xuất hàng ngày trong tuần vừa qua . 

2. Biểu đồ miền (Area chart) 

Vẽ biểu đồ miền đó là sự điều chỉnh của từng biểu đồ đường trong đó có những khu vực dưới đường được điền vào để có khả năng được nhấn mạnh về tầm quan trọng của nó. Màu tô cho những khu vực dưới mỗi dòng nên hơi trong suốt để có thể nhận thấy được những khu vực chồng lấp . 

✅ Mọi người cũng xem : quan hệ thừa kế là gì

3. Biểu đồ cột (Bar chart) 

Vẽ biểu đồ cột cũng sẽ minh họa tới những sự thay đổi ngay theo thời gian. Nhưng nếu như có thường xuyên hơn một biến, biểu đồ cột sẽ có khả năng giúp đơn giản so sánh được những trực quan hoá dữ liệu cho từng biến ngay tại từng thời điểm. Ví dụ, như một biểu đồ cột có thể so sánh được với những doanh số bán hàng của mỗi công ty từ năm nay và năm trước đó .

4. Biểu đồ mật độ tần suất (Histogram)

Vẽ biểu đồ trông giống như một biểu cột, nhưng đo mật độ tần suất thay vì với những chiều hướng theo thời gian. Trục X của biểu đồ liệt kê những giá trị của bộ dữ liệu và những khoảng của biển, trục y là tần suất, do đó với mỗi loại cột sẽ đại diện cho những tần suất của một biến đó. Ví dụ: bạn có khả năng đo được những mật độ tần suất của từng câu trả lời cho các câu hỏi khảo sát. Các cột sẽ là câu trả lời khi không đạt yêu cầu, trung lập, và đạt được yêu cầu. Điều này cũng sẽ cho bạn biết có bao nhiêu người đã đưa ra được mỗi câu trả lời tương ứng nhất .

✅ Mọi người cũng xem : hệ tư tưởng của giai cấp công nhân là gì

5. Biểu đồ tán xạ (Scatter plot) 

Vẽ biểu đồ tán xạ được sử dụng để có thể tìm được mối tương quan. Mỗi điểm trên một biểu đồ đều đặn phân tán có nghĩa là khi x = này, thì y sẽ bằng một giá trị này. Theo như cách đó, nếu các điểm đang có xu hướng theo một cách nhất định (hướng lên bên trái, xuống bên phải, vv) thì sẽ có một mối quan hệ giữa chúng. Nếu với các điểm phân tán mà khi không có những chiều hướng nào thì các biển số hoàn toàn sẽ không gây ảnh hưởng nhéu .

✅ Mọi người cũng xem : ngày 24 tháng 7 là cung hoàng đạo gì

 6. Biểu đồ bong bóng (Bubble chart) 

Vẽ biểu đồ bong bóng đó là một biến thể của biểu đồ tán xạ, trong đó có mỗi điểm dữ liệu sẽ được biểu thị bằng một bong bóng có những độ lớn và những sự phân bố khác nhéu ở trên các trục. Một điểm bất tiện của biểu đồ bong bóng đó chính là những Giảm về những kích thước của bong bóng do không gian Giảm trong các trục. Vì vậy, không phải tất cả những dữ liệu sẽ phù hợp với các loại hình trực quan hoá dữ liệu này . 

✅ Mọi người cũng xem : tổng tài sản nợ là gì

7. Biểu đồ tròn (Pie chart) 

Vẽ biểu đồ tròn đó là tùy chọn được hấp dẫn nhất để có khả năng minh họa được tới những tỷ lệ phần trăm, vì nó sẽ hiển thị được mỗi phần tử như với một phần của tổng thể. Vì vậy, nếu như trực quan hoá dữ liệu của bạn có đang giải thích như sự cố theo tỷ lệ phần trăm, biểu đồ hình tròn sẽ được trình bày rõ ràng những phần theo như tỷ lệ thích hợp .

✅ Mọi người cũng xem : học barista ở đâu tốt

8. Máy đo (Gauge)

Một thước đo sẽ có khả năng được dùng để có khả năng minh họa được những khoảng cách giữa các khoảng. Điều này để có khả năng được trình bày ngay dưới dạng thước đo cũng giống những đồng hồ tròn hoặc như một thước đo kiểu ống giống như nhiệt kế chất lỏng. thường xuyên đồng hồ đo sẽ có thể được hiển thị về cạnh nhau để được minh họa sự đến sự khác biệt giữa nhiều khoảng thời gian.

9. Bản đồ (Map) 

Phần lớn những dữ liệu được xử lý trong các công ty đều có yếu tố vị trí, giúp dễ dàng minh họa được trên bản đồ. Một ví dụ về trực quan hoá dữ liệu bản đồ đó là thể hiện lên những vùng đang có dịch Covid – 19, mức độ để báo động của từng mỗi vị trí . 

10. Bản đồ nhiệt (Heat map) 

Một bản đồ nhiệt về cơ bản sẽ là một ma trận mã màu. Một công thức được sử dụng để có thể tô màu mỗi ô của ma trận , được tô bỏng để có thể biểu thị lên những giá trị tương đối hoặc có khả năng sẽ rủi ro của ô đó. Thông thường về màu sắc bản đồ nhiệt từ xanh lá cây đến đó, với màu xanh lá cây đó sẽ là kết quả tốt hơn và màu đỏ là tồi nặng hơn. Kiểu trực quan hoá dữ liệu này cũng rất hữu ích vì với màu sắc sẽ được diễn giải nhénh hơn so với số . 

Mọi Người Xem :   giấy báo có của ngân hàng Tiếng Anh là gì

11. Sơ đồ khung (Frame diagram) 

Sơ đồ khung về cơ bản đó chính là bản đồ cây thể hiện rõ được những cấu trúc mối quan hệ phân cấp . Một sơ đồ về khung bao gồm những nhánh, mỗi nhánh có nhiều những nhánh liên kết với chúng theo với từng cấp độ, và ngày càng có nhiều nhánh.

Xem thêm: Tìm hiểu crack là gì? Những lợi ích và tác hại của crack là gì?

V. 5 lưu ý để trực quan hóa dữ liệu hiệu quả

5 lưu ý để trực quan hóa dữ liệu hiệu quả

5 lưu ý để trực quan hóa dữ liệu hiệu quả

✅ Mọi người cũng xem : công cụ của tin học là gì

1. Chọn đúng loại biểu đồ

Điều này nghe có vẻ hiển nhiên, mặc khác chúng ta lại thường chọn vẽ biểu đồ theo như thói quen hoặc theo cảm tính.

Chúng ta luôn cần nhớ rằng “form follows function” (chức năng đi trước, trình bày đi sau) – mục đích của những việc trực quan hoá dữ liệu hóa sẽ luôn cần được sự cân nhắc đầu tiên.

Bạn có khả năng tự hỏi được những mục đích của bạn đó chính là so sánh đến những tổng giá trị, thể hiện được lên những chiều hướng, tìm hiểu được về sự phân phối hay có những mối quan hệ giữa các biến? Từ đó bạn cũng có thể chọn 1 hoặc 1 số biểu đồ phù hợp để có khả năng thể hiện được những mục đích này.

Với ví dụ như dưới đây ta có dataset về những tỉ lệ lỗi của các loại sản phẩm. Chúng ta đang cần tìm được ra loại sản phẩm có tỉ lệ lỗi cao (parts per million). Vẽ biểu đồ cột như hình bên phải đó là cách đơn giản và hiệu quả để biểu diễn tình trạng này. bên cạnh đó, tree maps và packed bubble charts như mỗi hình bên trái rối mắt và khiến người đọc sẽ gặp khó khăn trong việc so sánh.

✅ Mọi người cũng xem : thuê mua nhà ở xã hội là gì

2. Không phải tất cả các tổng giá trị (data points) đều quan trọng như nhéu

Bạn nhớ đừng nên ném toàn bộ những dataset vào cùng một biểu đồ, hãy phân tích trước để có thể biểu diễn/ highlight đến những thông tin quan trọng sao cho người xem dễ nắm bắt nhất.

Biểu đồ này thể hiện đến chuỗi giá trị theo thời gian, với đường A A’, ta thấy được 1 thời điểm đang có sự thay đổi ngay về chu kỳ và về cường độ, liên quan đến sự suy giảm mạnh vài với chu kỳ sau đó. Bạn thấy những biểu đồ nào sẽ giúp ta phát hiện được điều này tốt hơn?

Biểu đồ ngay phía trên chỉ đơn thuần để trực quan hoá dữ liệu hóa đến toàn bộ dataset, trong khi những biểu đồ dưới giúp người xem được đơn giản phát hiện đến các điểm được đặc biệt hơn.

Một ví dụ  đó là khi muốn biểu diễn tổng doanh thu của mỗi năm theo ID dự án (với có 41 dự án khác nhau). Biểu đồ bên trái biểu diễn đến tất cả 41 dự án nên sẽ khá lộn xộn, trong khi có những biểu đồ bên phải biểu diễn 5 dự án có doanh thu lớn nhất và  gộp các dự án còn lại vào  trong nhóm “others”, một cách gọn gàng và hợp lý hơn.

mặc khác để cách lọc này có khả năng sẽ khiến cho tổng không bằng 100% và có khả năng sẽ gây ra hiểu nhầm. Nên cần phải đảm bảo được mỗi khi nhóm có những tổng giá trị còn lại đó là tổng luôn bằng 100% hoặc sẽ giải thích rõ  rằng tại sao với 1 số tổng giá trị lại không được tính đến.

3. Biểu đồ nói thật hay nói dối?

Việc trực quan hoá dữ liệu sẽ giúp biểu diễn thực tế về số liệu, thay vì những làm sai lệch hay gây ra nhầm lẫn cho người xem. Việc trình bày các biểu đồ quan trọng để tạo nên khung tham chiếu cho người xem.

Trong ví dụ dưới đây, sản lượng của một quá trình sẽ tăng từ 56% lên 67% không quá 6 tháng. Biểu đồ phía bên trái đang cố tình phóng đại  đến sự tăng trưởng này bằng cách để gốc của trục y ở mức giá trị 50%. Biểu đồ bên phải sẽ biểu diễn được chính xác hơn mỗi khi trục y bắt đầu ở tổng giá trị 0 và có kèm theo những đường mục tiêu để có thể so sánh.

4. dùng màu sắc hợp lý

Việc sử dụng màu sắc sẽ giúp thêm thông tin hoặc những highlight những điểm quan trọng ngay trong biểu đồ. Trong những trường hợp khác, màu sắc thường hay bị thừa thãi và sẽ gây ra rối mắt.

5. Đơn giản và hiệu quả

Các công cụ trực quan hoá dữ liệu Hiện tại giúp chúng ta tạo ra được những biểu đồ đẹp mắt và với phức tạp với chỉ có vài cái click chuột. mặc khác, quá thường xuyên yếu tố về thẩm mỹ sẽ có khả năng làm người xem bị sao nhãng khỏi những thông điệp chính của biểu đồ. Less is more.

Bên cạnh những việc dùng công cụ, thì với những tư duy phân tích và với các thiết kế cũng rất quan trọng trong việc để xây dựng báo cáo.

Xem thêm: Barcode là gì? Hướng dẫn tạo barcode bằng phần mềm mới nhất

VI. 11 Công cụ trực quan hóa dữ liệu hấp dẫn nhất Hiện tại 

1. Google Data Studio

Chúng ta nên bắt đầu với những công cụ này vì một lý do – Google Data Studio là một lựa chọn yêu thích nhất của tôi. Thật dễ dàng để có khả năng làm việc được với công cụ trực quan hoá dữ liệu này nếu như bạn đã quen thuộc với Google Suite (Sheets, Docs, Analytics,..) và quan trọng nhất, Google Data Studio hoàn toàn miễn phí nhưng cũng sẽ cung cấp đủ đến mọi tính năng bạn cần cho một báo cáo chuyên nghiệp.

Nền tảng này sẽ đi kèm cùng với hàng trăm trình liên kết gốc (từ Google Analytics đến Facebook Ads), nhưng cũng sẽ có thể được sửa đổi để lấy những trực quan hoá dữ liệu từ mọi nơi thông qua Google Sheets hoặc Google BigQuery .

Ưu điểm

  • kết nối được dễ dàng với hàng tá những danh mục, cả danh mục của Google và sẽ không cần phải của Google

  • dễ dàng tiếp thu được và học hỏi được với nhiều nội dung học tập miễn phí có sẵn

  • Hoàn toàn miễn phí

Nhược điểm

  • Việc tích hợp những dữ liệu của bên thứ ba đôi khi sẽ gặp trục trặc

  • Thêm những nguồn dữ liệu có thể bắt buộc đến một đường cong học tập dốc

  • Giá: Miễn phí

2. Tableau

Tableau một trong số những công cụ để có thể trực quan hoá dữ liệu hấp dẫn nhất, các công ty lớn như Verizon và Charles Schwab dựa vào Tableau để thu thập thông tin cụ thể từ các trực quan hoá dữ liệu của họ trên mọi bộ phận.

Mọi Người Xem :   HIỂU ĐÚNG VỀ CÁC BỆNH NỘI KHOA

Ưu điểm

  • dễ dàng sắp xếp những dữ liệu và đầu vào ngay từ thường xuyên nguồn

  • Tích hợp liền mạch với Salesforce và những nền tảng khác

Nhược điểm

  • Bạn cần phải cập nhật các thông số tĩnh theo như cách thủ công

  • Không tự động làm mới

  • Đôi khi chậm

  • Giá rất cao

Giá: Bạn có thể sử dụng thử Tableau Public miễn phí. Tableau cung cấp  đến hai phiên bản trả phí: một cho bộ nhớ về đám mây và đó sẽ một cho những phần mềm đang được lưu trữ đầy đủ của họ.

3. Looker

Looker cung cấp đến một thư viện mẫu template trực quan hoá dữ liệu khổng lồ và sẽ vận hành hoàn toàn trong trình duyệt đó của bạn.

Ưu điểm

  • dễ dàng tích hợp được với cơ sở dữ liệu từ BigQuery, Amazon Redshift, …

  • Các tùy chọn để tùy chỉnh tuyệt vời

  • hoạt động tốt cho bộ dữ liệu lớn

Nhược điểm

  • Không có thường xuyên những tính năng

  • Khó thiết lập LDAP

  • Tải chậm hơn mỗi khi làm việc trên Bộ dữ liệu lớn hơn

  • Giá: Looker không cung cấp đến những hệ thống định giá theo những tầng thông thường. Thay vào đó, bạn cần phải liên lạc được với họ để được báo giá.

4. Infogram

Nếu bạn (hoặc của khách hàng của bạn) chú trọng đến những khía cạnh đồ họa, chắc chắn về Infogram là một trong những công cụ trực quan hoá dữ liệu tốt nhất Hiện tại bạn cũng nên thử sử dụng.

Ưu điểm

  • Các tùy chọn hình ảnh hóa độc đáo như về đồ họa thông tin và với những bản đồ

  • Các mẫu sẽ được tối ưu hóa hoàn toàn cho những thiết bị di động và mạng xã hội

  • Nhúng ngay đến những thiết kế vào mỗi trang web

Nhược điểm

  • Mất khá nhiều thời gian để các bạn học cách sử dụng thành thạo

  • Không phải chỉ là công cụ tích hợp trực quan hoá dữ liệu hấp dẫn nhất

  • Giá: Infogram cung cấp một phiên bản miễn phí đẹp mắt và các gói mỗi tháng hoặc hàng năm linh động

5. D3.js

D3.js là một thư viện JavaScript mà bạn có khả năng dùng để trực quan hoá dữ liệu ở các định dạng tương tác cao với HTML, CSS và SVG.

Ưu điểm

  • Đây là nền tảng có mã nguồn mở

  • Các ví dụ được tương tác, phân cấp và có hoạt ảnh mạnh mẽ

Nhược điểm

  • Mất thời gian để học (nhưng nó hoàn toàn xứng đáng)

  • Không có những mẫu dựng sẵn, chỉ có mã làm trực tiếp

  • Giá: Mã nguồn mở và hoàn toàn được miễn phí

6. FusionCharts

FusionCharts không những để cung cấp đến cho bạn về những biểu đồ thanh, biểu đồ điểm và những biểu đồ tương tác JavaScript tiêu chuẩn mà còn thực sự được tỏa sáng như một trong những công cụ trực quan hoá dữ liệu hấp dẫn nhất cho mỗi bản đồ.

Ưu điểm

  • Rất nhiều với ví dụ và mẫu

  • Tích hợp tốt được với những nền tảng khác

  • Hỗ trợ cả JSON và XML

Nhược điểm

  • Chỉ toàn là mã JavaScript (chắc chắn sẽ không phù hợp được với người sử dụng khi không am hiểu code)

  • Quá thường xuyên những tính năng sẽ có khả năng khiến cho bạn choáng ngợp

  • Giá: Bạn có khả năng tải xuống bản sử dụng thử miễn phí, nhưng với những bản quyền sẽ được đầy đủ khá đắt: bắt đầu ngay từ 497$ cho một lập trình viên.

7. Datawrapper

Datawrapper được thiết kế cho những nhà báo nên bạn sẽ được dễ dàng và nhénh chóng được sử dụng ngay cả khi không có bất kỳ về kiến ​​thức mã hóa nào.

Ưu điểm:

  • Các mẫu tương tác cho mỗi bản đồ, biểu đồ và bảng

  • Hoàn toàn có thể phục vụ trên các thiết bị

  • Thân thiện với người sử dụng

Nhược điểm:

  • Khó tùy chỉnh

  • Phiên bản miễn phí lưu trữ về dữ liệu của bạn trên máy chủ của họ

  • Giá: Datawrapper cung cấp gói miễn phí chắc chắn được với những phiên bản tùy chỉnh bắt đầu từ khoảng 600$ một tháng

8. Sisense

Sisense tự định vị mình được một nền tảng BI end-to-end hoàn chỉnh. không chỉ đó sẽ là một trong số những công cụ trực quan hoá dữ liệu hấp dẫn nhất – Sisense sẽ còn có khả năng giúp cho bạn phát triển được những ứng dụng theo như hướng dữ liệu.

Ưu điểm

  • Xử lý tốt được những tập dữ liệu lớn

  • có khả năng tiếp cận về thời gian thực cho các nhóm

  • Tùy chỉnh linh động

Nhược điểm

  • Hình ảnh của báo cáo xuất ra đôi khi có chất lượng thấp

  • Các hình khối phân tích rất khó thiết lập và duy trì

  • Giá: Mặc dù trang web của họ tự hào về có mức giá trong vòng cao, bạn vẫn cần phải LH được với họ để có khả năng được báo giá dễ dàng.

9. Microsoft Power BI

Không chịu thua kém Google, Microsoft cũng cung cấp đến một công cụ trực quan hoá dữ liệu dựa trên hiệu ứng đám mây được các Doanh nghiệp lớn như Adobe, Meijer và Heathrow Airport sử dụng.

Ưu điểm

  • Tích hợp tốt với những công cụ dữ liệu khác của Microsoft

  • Có hàng tấn để tùy chọn trực quan hoá dữ liệu

Nhược điểm

  • Cần phải thống kê sâu nếu như bạn muốn dùng được thành thạo những công cụ này

  • Phiên bản của đám mây không được mở rộng như phiên bản Windows

  • Giá: Gói chuyên nghiệp tự phục vụ sẽ có giá siêu phải chăng, chỉ bắt đầu từ 10$ một tháng.

10. HighCharts

HighCharts đã cung cấp một thư viện rộng lớn để có thể tạo những dự án trực quan hoá dữ liệu di động và web được tối ưu hóa cho những thiết bị di động, siêu tương tác trên với bất kỳ những nền tảng nào.

Ưu điểm

  • hoạt động được với bất kỳ cơ sở dữ liệu phụ trợ hoặc sẽ ngăn xếp máy chủ nào

  • Hàng tấn mẫu để có khả năng tùy chỉnh, bao gồm có cả bản đồ

  • Trình gỡ lỗi tích hợp

Nhược điểm

  • API rộng lớn của họ sẽ cần một vài kỹ năng và những kinh nghiệm để nắm bắt

  • bắt buộc để có khả năng viết mã để tùy chỉnh như các mẫu của chúng

  • Giá: Công cụ này không hề rẻ, nhưng họ cung cấp đến cả gói và gói dành cho những nhà phát triển đơn lẻ cho sản phẩm của họ như về Maps, JavaScript, Gannt và Stock.

11. RAWGraphs

RAWGraphs tự gọi mình đó là “kết nối bị thiếu” giữa những bảng tính và đồ họa vector. Là một trong những công cụ đang được trực quan hoá dữ liệu tốt nhất, RAWGraphs rất dễ tùy chỉnh và cần được học hỏi.

Ưu điểm

  • Tương thích được với thường xuyên những định dạng trực quan hoá dữ liệu

  • Lý tưởng cho mỗi nội dung thích hợp cao

Nhược điểm

  • Không có những ví dụ cơ bản

  • Tùy chỉnh được yêu cầu trợ giúp của những nhà phát triển

  • Giá: Miễn phí!

Xem thêm: Plc là gì? Nguyên lý hoạt động và ứng dụng của bộ điều khiển lập trình plc

VII. Kết luận

Data visualization là gì? Trực quan hóa dữ liệu hiệu quả đó chính là bước quan trọng của việc phân tích dữ liệu. Không có nó, những hiểu biết và về những thông điệp quan trọng sẽ có thể bị mất hoặc sẽ được hiểu một cách không chính xác. Khi biết đến những trực quan hoá dữ liệu bạn cũng sẽ dễ dàng phân tích được về những trực quan hoá dữ liệu hơn vì đã có khả năng hiểu rõ được về bản chất vấn đề, từ đó cũng sẽ đưa ra được những quyết định trong kinh doanh, Marketing.



Các câu hỏi về trực quan hóa dữ liệu là gì


Nếu có bắt kỳ câu hỏi thắc mắt nào vê trực quan hóa dữ liệu là gì hãy cho chúng mình biết nhé, mõi thắt mắt hay góp ý của các bạn sẽ giúp mình cải thiện hơn trong các bài sau nhé <3 Bài viết trực quan hóa dữ liệu là gì ! được mình và team xem xét cũng như tổng hợp từ nhiều nguồn. Nếu thấy bài viết trực quan hóa dữ liệu là gì Cực hay ! Hay thì hãy ủng hộ team Like hoặc share. Nếu thấy bài viết trực quan hóa dữ liệu là gì rât hay ! chưa hay, hoặc cần bổ sung. Bạn góp ý giúp mình nhé!!

Các Hình Ảnh Về trực quan hóa dữ liệu là gì


Các hình ảnh về trực quan hóa dữ liệu là gì đang được chúng mình Cập nhập. Nếu các bạn mong muốn đóng góp, Hãy gửi mail về hộp thư [email protected] Nếu có bất kỳ đóng góp hay liên hệ. Hãy Mail ngay cho tụi mình nhé

Tra cứu thông tin về trực quan hóa dữ liệu là gì tại WikiPedia

Bạn hãy tham khảo nội dung chi tiết về trực quan hóa dữ liệu là gì từ web Wikipedia.◄ Tham Gia Cộng Đồng Tại

???? Nguồn Tin tại: https://buyer.com.vn/

???? Xem Thêm Chủ Đề Liên Quan tại : https://buyer.com.vn/hoi-dap/

Related Posts

Tính chất hóa học của Bari (Ba) | Tính chất vật lí, nhận biết, điều chế, ứng dụng. 1

Tính chất hóa học của Bari (Ba) | Tính chất vật lí, nhận biết, điều chế, ứng dụng.

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…
Sorbitol là gì? Tác dụng của sorbitol C6H14O6 trong cuộc sống 2

Sorbitol là gì? Tác dụng của sorbitol C6H14O6 trong cuộc sống

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…
Bạc là gì? Những ứng dụng của bạc trong cuộc sống 3

Bạc là gì? Những ứng dụng của bạc trong cuộc sống

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…
CH3Cl - metyl clorua - Chất hoá học 4

CH3Cl – metyl clorua – Chất hoá học

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…
I2 - Iot - Chất hoá học 5

I2 – Iot – Chất hoá học

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…
7 lý do thú vị giải thích vì sao bạn thường xuyên bị muỗi đốt 6

7 lý do thú vị giải thích vì sao bạn thường xuyên bị muỗi đốt

ContentsĐánh giá về Trực quan hoá dữ liệu là gì? Tại sao nói Data Visualization vô cùng quan trọngI. Trực quan hoá dữ liệu – Data Visualization là…